Giải bằng phương pháp đặt ẩn phụ – Giáo Án, Bài Giảng

Phương trình dạng: Phương trình dạng này khó “nghĩ ra” hơn dạng trên nhưng nếu bình phương cả 2 vế ta có thể đưa về dạng trên Ví dụ 5. Giải phương trình:

doc16x16-1167092

7 trang

| Chia sẻ: liennguyen452| Lượt xem : 14522

| Tải trọng: 5

Tải xuống-1713752

Bạn đang xem nội dung tài liệu Giải bằng phương pháp đặt ẩn phụClick vào nút DOWNLOAD bên trên để tải tài liệu về máy

Dạng 2. II. Giải pháp của một vài phương trình bằng cấu hình đối tượng có thể được giảm xuống dạng đơn giản hơn bằng cách thăng hoa. Tuỳ theo dạng phương trình có thể đặt một ẩn, nhiều ẩn số, rút ​​gọn về phương trình hoặc hệ phương trình. 1. Phương pháp đặt Che giấu phụ trợ hoàn chỉnh a. Một số dạng thông dụng là yes và f(x) if t = yes nhưng (cố định) đặt yes if b. Ứng dụng Ví dụ Ví dụ 1. Giải phương trình : = 11. Lời giải. t = , đặt Phương trình đã cho trở thành V Ta thấy thỏa mãn tất cả các yêu cầu, với = 1. Với = 9 nên phương trình có nghiệm là , . Ví dụ 2. Giải phương trình
. Trả lời Điều kiện Cách 1: Đặt pt đã cho có dạng : Ví dụ 3 với t = 3 thay vào biểu thức lập được : Giải phương trình : Dkxđ x ≥ 1 Hệ thức t = đ/kt ≥ 1 dẫn đến pt t2-5t+6 = 0 . Ví dụ 4. Giải phương trình: Không là nghiệm của pt đã cho. Chia cả hai vế của PT bằng cách đặt nghiệm t = 1, t = 1/2 Trừ nghiệm của phương trình Bài tập đề ra abcdefghmpqrs 2. Phương pháp đặt ẩn phụ không đầy đủ Ví dụ 1. Giải phương trình : Giải :, ta có : Ví dụ 2. Giải phương trình: Giải: Đặt 1 3. 3. Đặt ẩn số của tích Dùng đẳng thức Ví dụ 1. Giải phương trình : Lời giải : Ví dụ 2. Giải phương trình : Lời giải : +, không phải nghiệm +, ta chia cả hai vế : Ví dụ 3. Giải phương trình : Lời giải : pt Ví dụ 4 .Giải phương trình : Giải : Đk : Chia cả hai vế : 4. Lập 2 ẩn số của hệ phương trình 1: Lập 2 ẩn số Ví dụ 1. Giải phương trình phương trình : Ví dụ 2. Phương trình : Loại 2: Biến phương trình một ẩn số thành hệ: Ví dụ 3. Giải phương trình: Ví dụ 4. Giải phương trình: (1 ) Lời giải: Ni Khăn rằn: Cài bằng. Từ đó phương trình ( 1 ) trở thành hệ phương trình: Trừ hai vế ( 2 ) và ( 3 ) ta được :. Xảy ra 2 trường hợp: a) hoặc, thay vào ( 2 ) phương trình : giải được : b) hoặc, thay vào ( 2 ) : giải được : kết luận : có 2 nghiệm thỏa mãn điều kiện đề bài thì PT ( 1 ) có 2 nghiệm trên . Dạng 3: Quay lại cấu trúc thời gian Nếu một phương trình vô tỷ có dạng như sau: C trong chuỗi có thể là một dãy số có biểu thức Ta giải hoàn toàn được như sau: , thì ta có hệ: Ví dụ 5. Giải phương trình sau: Giải: Ta thấy: không phải nghiệm, nghiệm trục ta có: Vậy ta có Hệ: Thử lại; Vậy phương trình có 2 nghiệm: x = 0 vx = Ví dụ 6. Giải phương trình: ta thấy:, vậy không thỏa mãn điều kiện kèm theo trên. Đặt hai vế cách nhau hoàn toàn bởi x thì bài toán trở nên đơn giản hơn. Bài tập gợi ý Giải các phương trình sau: 1. 2. 3. 4. 5. (đặt y = ) 6. 7. 8. 5. Đặt ẩn phụ – Dành cho ai chưa biết đưa về phương trình thuần nhất bậc 2 đối với 2 biến: Ta đã biết cách giải phương trình : ( 1 ) Xét phương trình : trở thành . Thử trực tiếp và các trường hợp sau cũng cho kết quả ( 1 ) Ta thay các biểu thức A ( x ), B ( x ) bởi các biểu thức vô tỷ rồi được phương trình vô tỷ ở dạng này. MỘT. Phương trình có dạng : Do đó phương trình hoàn toàn có thể được giải bằng phương pháp trên Ví dụ 1. Giải phương trình: Lời giải : Đặt phương trình là : Tìm được : Ví dụ 2. Giải phương trình : Ví dụ 3. Giải phương trình sau : Lời giải : Lấy ĐK : xt : Viết đẳng thức, ta được : Đặt, ta được : Ta được : Ví dụ 4. Giải phương trình : Giải : Nhận xét : Hãy chuyển pt trên thành phương trình thuần túy của điểm kỳ dị bậc 3 đối với x và y : Pt có nghiệm : B. Phương trình dạng : Các phương trình cho ở dạng này nhiều hơn dạng trên Sẽ khó “tìm” hơn, nhưng nếu bình phương cả 2 vế ta có thể đưa về dạng trên. Ví dụ 5. Giải phương trình : Giải : Đặt : Khi đó phương trình trở thành : Ví dụ 6. Giải phương trình sau : Giải tìm Dk. phải vuông cả 2 vế: ta có thể đặt cả : thì ta có cấu trúc: do. Ví dụ 7. Giải phương trình : Lời giải : Dk. Nếu đổi cạnh hình vuông ta được: Nhận xét: không giữ nguyên số : nên không đặt. Nhưng thuận lợi ta có: Viết lại phương trình: Ở đây vấn đề được giải quyết.

  • File đính kèm:doc16x16-3791964
Tham Khảo Thêm:  Công Thức Tính Số Đồng Phân Este, Cách Tính Số Đồng Phân – https://thcsbevandan.edu.vn - thcsbevandan.edu.vn

Loại 2 – Giải quyết bằng xác thực ẩn phụ cho submit.doc

Related Posts

Năm 2012 Mệnh Gì ? Tuổi Nhâm Thìn Hợp Tuổi Nào & Màu Gì? Tuổi Con Gì

Số phận không thể thay đổi, nhưng nhờ có Phong thủy mà con người nhận ra điều đó và biết điều gì nên tránh, nên tập trung…

Cách Tạo Địa Chỉ Gmail, Tạo Lập Tài Khoản Gmail Miễn Phí Nhanh Nhất

Lemon hướng dẫn bạn thủ thuật Tạo một địa chỉ Gmail mới Không cần xác minh số điện thoại. Nhưng trước tiên, tôi hy vọng bài viết…

Nội Dung Của Bài Sông Núi Nước Nam Và Phò Giá Về Kinh, Nội Dung Và Nghệ Thuật Bài Sông Núi Nước Nam

Bài Sông Nước Nam Ngữ văn lớp 7, giáo viên cung cấp bài tập Sông Nước Nam đầy đủ nội dung, bố cục, tóm tắt, dàn ý…

Tuổi Đinh Sửu Sinh Năm 1997 Hợp Màu Gì ? Hợp Màu Gì? Hợp Với Ai?

Màu sắc là một trong những vấn đề quan trọng của Phong Thủy ảnh hưởng đến vận may, tài lộc của mỗi người. Trong bài viết dưới…

Tìm Hiểu Lịch Sử 80 Năm Lịch Sử Đội Thủ Đô Vn, 80 Năm Lịch Sử Đội Thủ Đô

Đáp án tìm hiểu về lịch sử 80 năm thành lập Đội Thiếu niên tiền phong Hồ Chí Minh sẽ được chúng tôi giải đáp chi tiết…

Các Cách Kiếm Tiền Trên Wattpad Có Được Tiền Không? Các Trang Viết Lách Kiếm Tiền Tại Nhà Mùa Dịch

Viết truyện trên wattpad miễn phí và kiếm tiền là nội dung được nhiều người tìm kiếm trong vài ngày gần đây. Hãy cùng tìm hiểu cách…

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *